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Abstract—The Hadoop Distributed File System (HDFS) is
the storage of choice when it comes to large-scale distributed
systems. In addition to being efficient and scalable, HDFS
provides high throughput and reliability through the repli-
cation of data. Recent work exploits this replication feature
by dynamically varying the replication factor of in-demand
data as a means of increasing data locality and achieving
a performance improvement. However, to the best of our
knowledge, no study has been performed on the consequences
of varying the replication factor. In particular, our work is the
first to show that although HDFS deals well with increasing
the replication factor, it experiences problems with decreasing
it. This leads to unbalanced data, hot spots, and performance
degradation. In order to address this problem, we propose a
new workload-aware balanced replica deletion algorithm. We
also show that our algorithm successfully maintains the data
balance and achieves up to 48% improvement in execution time
when compared to HDFS, while only creating an overhead of
1.69% on average.

Keywords-Hadoop Distributed File System, Replication Fac-
tor, Software Performance.

I. INTRODUCTION

In recent years, the exponential growth of data and the
consequential need to process tremendous volumes, has
resulted in a demand for efficient data analysis systems, i.e.,
systems that can support large-scale, data-intensive analytics.
This led many companies to store and analyse their data
on distributed systems. One popular example of this is
Hadoop [1], a software framework that has been developed
by the Apache Software Foundation to store and process big
data in an efficient, reliable, and distributed manner. One of
the main components of Hadoop is the Hadoop Distributed
File System (HDFS) [2]. HDFS is responsible for storing
large data sets on distributed machines. Different processing
engines (e.g., MapReduce [3], Spark [4]), or applications
(e.g., data warehouse systems such as Hive [5] and Pig [6])
run on top of HDFS. Therefore, optimising HDFS is crit-
ical for the performance of the Hadoop ecosystem as any
improvement on HDFS will affect the overall system.

Replication is a well-known technique for improving the
performance of HDFS [7], [8], as increasing the replica-
tion factor is directly linked to increasing data availability.

Some proposals in the literature aim at increasing the data
availability of big data systems using adaptive replication
factor frameworks. These frameworks assign a popularity
ratio for each file in the system in either a proactive [9],
or dynamic [10], [11], [12] way, and use this popularity
ratio to define the replication factor. Hadoop systems are
long-running systems; thus the demand for files can change
over time. Although varying the replication factor can allow
significant gains in performance, the placement of replicas
is a crucial problem in clusters [7], [13], [14]. As the
replication factor changes, so as the block density of each
node, leading to performance degradation. Therefore, in
homogeneous clusters, better data placement algorithms split
data into equal chunks and distribute them on nodes evenly.

While there has been some work in the literature analysing
the impact of increasing the replication factor [7], [8], to
the best of our knowledge, there is no work analysing the
effects of decreasing it. To the best of our knowledge,
our paper is the first to identify a major data unbalancing
problem in Hadoop’s replica deletion algorithm, which has
the potential to significantly degrade the performance of the
system. As a solution, we propose a novel Workload-aware
Balanced Replica Deletion algorithm (WBRD) to prevent
this unbalancing problem on Hadoop clusters. We investigate
the performance enhancement of WBRD by conducting a
thorough performance evaluation. The contributions of this
paper can be summarised as follows: (i) we identified a
data unbalancing problem resulting in a major performance
degradation when the replication factor is decreased, (ii) we
formally defined the replica deletion problem, and (iii) we
proposed a new deletion algorithm (WBRD) to address this
problem, which improves the performance up to 48% with
only a small overhead.

The remainder of this paper is organised as follows: In
section II, we provide background information and related
work about HDFS. Section III identifies and models the
replica deletion problem in HDFS. Section IV details our
novel WBRD algorithm. Section V describes the exper-
imental environment. Section VI presents results of our
evaluation. Finally, section VII concludes this paper.



II. BACKGROUND AND RELATED WORK

HDFS has a master-slave architecture consisting of two
main node types, the master NameNode (NN), and the slave
DataNode (DN). The Heartbeat is the signal that is used to
maintain communication between the NN and the DNs. The
DN indicates it is alive by sending periodic heartbeats to the
NN. The NN controls block replication, enabled by receiving
a heartbeat and block reports from the cluster nodes. As
HDFS clusters are designed to run on commodity machines,
machine failures are not an exceptional situations [1]. To
provide reliability, the blocks storing the files are replicated
in at least 3 computers (by default), enhancing data locality
and allowing a greater tolerance towards machine failures.
The replication factor is both a file-level (i.e., can be changed
for any specific file individually) and an on-line (i.e., can be
altered at runtime) setting.

When data is uploaded onto HDFS, first it will be divided
into blocks of a predefined size (by default 128MB). These
blocks will be distributed over the cluster. By default, HDFS
creates exactly 3 replicas of each data block and places these
blocks according to HDFS block placement algorithm. The
first replica is placed on a DN in the local rack (preferably
on the client itself), the second replica is put on another
DN on a different rack, and the third replica is placed on a
different DN that is in the same rack as the second replica.
This placement strategy provides rack awareness and reduces
network traffic between racks.

When a job is submitted, the data must be first located
before it is processed. Each part of data used in a job is
called a “split”, and can be composed of one or more blocks.
It is always more efficient to process the data locally rather
than requesting the data from a remote node. In this way,
Hadoop will always try to process the data locally instead
of transferring the data from a different node. Hence, the
block placement is crucial for system performance.

There are three modes of task execution related to data
locality that are shown in Figure 1.
• Local access: when a data split is stored in the same

node running the task, e.g., Node 1 processes Block A.
• Same rack access: when a data split is stored in

another node, but within the same rack as the node
running the task, e.g., when Node 4 needs to process
Block B, it requests the block from Node 5 (which is
in the same rack).

• Off rack access: when a data split is stored in another
node and in another rack, probably with a slower
path through the network, e.g., when Node 3 needs to
process Block C, it requests the block from Node 6.

Since Hadoop always tries to run tasks locally, its resource
manager (YARN) may even delay the start of a task while
waiting for a local node to become available [15]. Achieving
a better data locality improves the reading performance and
reduces the network consumption, consequently leading to

Figure 1. Data locality in Hadoop jobs

lower execution time.
There is a lot of research on data placement as a means

to achieving a better data locality in Hadoop [16], [13],
[7]. There are also several work that exploit the replication
factor and put forwards frameworks [10], [11], [12] with
various approaches to determine the ‘ideal’ replication fac-
tor. For instance, Wei et al. propose CDRM, a cost-effective
dynamic replication management scheme for cloud storage
cluster [10]. The authors propose a model, which links the
replication factor with the data availability that they then use
to determine the minimum replication factor. Abad et al. [11]
propose DARE, an adaptive data replication for efficient
cluster scheduling. DARE uses an ageing algorithm and a
probabilistic approach to determine a suitable replication
factor. Cheng et al. [12] propose ERMS, an elastic repli-
cation management system for HDFS. The Active/Standby
storage model is used to increase the number of replicas for
“hot data” (in-demand data) to active nodes while storing
less replicas for “cold data”.

Although the proposed replica management frameworks
improve data availability and locality, none of the related
works to-date study the main drawback of changing the
replication factor dynamically in Hadoop. That is, the data
unbalancing problem that is introduced when the replication
factor is decreased. The resulting performance degradation
may not be avoidable in the long-term as, in an adaptive
system, data popularity changes over time and the replication
factor could be decreased. Our work details a new deletion
algorithm, WBRD, to overcome this shortcoming.

III. REPLICA DELETION PROBLEM

Block distribution is the critical issue in distributed com-
puting, where all machines collaborate with each other to
achieve a common goal. It is typically better to evenly-
distribute data equally over the cluster rather than storing all
the data in fewer nodes. If the data distribution is skewed, a
few nodes will keep more data than others, thus becoming
hot spots (they will process more data). Furthermore, the
rest of the nodes will be less likely to store the particular
blocks they have to process and will end up requesting them
from hot spot nodes.

In this case, even if nodes are available to process data,
they still need to delay the start of map tasks while they
wait for data transfer. After these blocks are transferred to
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Figure 2. The block distribution when the replication factor (RF) is changed

available nodes, computing can proceed. This will introduce
a bottleneck. Consequently, the network consumption and
the disk input/output will increase, CPU cycles will be
wasted, thus causing performance degradation.

A. Empirical Illustration

As a motivational example and in order to understand the
issue with decreasing the Replication Factor (RF) in terms
of data imbalance, we analyse HDFS’s behaviour when the
RF is changed (i.e. increased and decreased).

Figure 2 shows the block distribution per node in a cluster
of 20 nodes (see details of the setup in Section V) when
the replication factor is modified. Fig 2(a) shows the initial
block distribution (i.e., with RF = 3) and its evolution when
increasing RF from 3 to 10 step-by-step (increasing RF by
1 every time). Fig 2(b) shows the opposite, as it shows the
block distribution with an initial RF of 10 and its evolution
when decreasing RF step-by-step from 10 to 3. Fig 2(c)
shows individual block counts per node with each point
being a block count for a node (i) Default: with an initial
RF of 3, (ii) 10->3 Direct: when the RF is decreased in one
step from 10 to 3, and (iii) 10->3 StepByStep: when the RF
is decreased step-by-step from 10 to 3.

When RF is increased, it can be seen from Fig 2(a) that
all of the minimum values are above zero; that is, all the
nodes are involved in storing data. In fact, the minimum and
maximum values are always close to the median and also
the inter-quartile range (mid-spread) is quite narrow. Addi-
tionally, the standard deviation is approximately 7 blocks
only. This means that Hadoop successfully distributes data
equally over the cluster when RF is increased.

However, when RF is decreased, the inter-quartile range
gets wider after each step as shown in Fig 2(b). Immediately
after RF is decreased from 10 to 9, the minimum value
goes to zero. Consequently, at least one of the nodes is not
involved in storing data at all. After further inspection of the
results, it can be seen that the number of nodes not hosting
any data blocks is 1, 2, 4, 5 and 7 when the RF is decreased
to 9, 7, 5, 4, and 3, respectively. It can also be seen that

there is an increase in the inter-quartile range as the RF is
decreased. After reaching an RF of 3, only 65% of all nodes
are responsible for storing data. However, only 4 nodes are
storing 50% of the entire data. We clearly see from Fig 2(b)
that Hadoop does not effectively handle the decrease in RF,
as it creates an unbalanced data.

The replication factor can be decreased from 10 to 3
directly or step-by-step. Fig 2(c) shows how blocks are
distributed for each reduction methodology. While we see in
the ‘Default’ scenario that blocks are well distributed with
∼57 blocks per node and a standard deviation of 5, it is
not the case when RF is decreased from 10 to 3. However,
we see a larger disparity in block distribution for the direct
decrease in RF with a standard deviation of 80 compared
to 60 in step-by-step. Furthermore, only 55% of nodes are
involved in storing data when reducing RF directly compared
to 65% in the step-by-step case.

It is worthwhile mentioning that although we used Hadoop
version 2.7.3 in our experiments, we have seen the same
trend in other versions (e.g., 3.0.0 released on Dec. 2017). In
this paper, we have identified that decreasing the replication
factor could create a bottleneck on the system, which has the
potential to cause a significant system performance degra-
dation. Considering that Hadoop clusters are long-running
systems, the consequence of this could be pernicious.

B. Formal Definition

Let’s consider a cluster C composed of a set of slave
machines M (a.k.a., datanode) contained in a set of racks
Racks, such that every machine m ∈ M is contained in a
rack Rack(m) ∈ Racks. The cluster hosts a set of files F at
the root path Root. Each file Fi ∈ F at the path Root is split
over blocks Bi of a predefined size (by default 128MB).
Each block bij ∈ Bi is replicated ki ∈ N∗ times (i.e., the
replication factor of file Fi).

The replica of each block buij with u ∈ {1, .., ki} is hosted
by a machine M(buij) ∈ M. We denote the block count
by BC. Each machine m ∈ M hosts a number of blocks
UBC(m) (i.e., the block count on m). A machine m ∈ M



also has an average CPU utilisation UCPU (m, t) during the
last given time duration t.

We also define a partial block count UPBC(m,P ) for each
machine given a path P ⊆ Root which might be different
from Root (i.e., not including all the files in the distributed
system). To measure this partial block count, we only count
blocks bui,j that are part of any file Fi located at the given
path P . Note that if P is equal to Root, then, UBC(m,P ) =
UPBC(m).

We introduce a binary variable xuij for each block replica
buij that takes the value 1 if the block is kept after reducing
the replication factor, and 0 if it is deleted.

We aim in our work to reduce the replication factor for
each file Fi ∈ F in the path P from ki to knewi , with ki >
knewi > 0. This is enforced by the equation (1).

ki∑
u=1

xuij = knewi , ∀ Fi ∈ P, ∀ j ∈ {1, ..., |Bi|} (1)

While deleting replicas, we also aim at maintaining rack
awareness as expressed in equation (2). In the case of a
multi-rack environment and a new replication factor larger
than 2, the replicas should be spread over two or more racks.
∀ Fi ∈ P, ∀ j ∈ {1, ..., |Bi|}:

∣∣{Rack(M(buij)) | u ∈ {1, ..., ki} and xuij = 1
}∣∣ ≥ 2 (2)

We also introduce a variable PBCm ∈ R+ for each
machine m ∈ M which will set to the partial block count
of m after the reduction in replication factor (non-deleted
blocks). Every variable PBCm takes its value following
equation (3). ∀m ∈M:

PBCm =
∑

i∈{1,...,|F|}

∑
j∈{1,...,|Bi|}

∑
u∈{1,...,ki}
∧ M(buij)=m

xuij (3)

For a given path P ⊆ P , the objective of our work is
to reduce the replication factor to the desired one while
satisfying the rack awareness constraints and minimising the
maximum PBC of all machines of the cluster as expressed
in equation (4).

minimise max
m∈M

(PBCm) (4)

IV. TOWARDS A BETTER REPLICA DELETION

The overall objective of our work is to develop a dynamic
framework to configure replication factor, as described in our
previous work [8]. However, while investigating the perfor-
mance benefits of adaptive replication factor, we identified
a critical cluster unbalancing problem upon replica deletion
using the current Hadoop replica deletion algorithm. The
purpose of the work in this paper is to improve the perfor-
mance of Hadoop by providing a workload-aware balanced

replica deletion algorithm. Using the proposed algorithm, we
expect to see an even data distribution. Therefore, the data
locality takes advantage of well-distributed data to achieve a
better performance. The resource manager can easily assign
a map task to an available node that is also storing data. This
will help to reduce the network traffic because data need not
be requested remotely.

Replication factor is a file-level setting which can be
changed on a per file or per path basis. The Following
command can be used for setting the replication factor:

hadoop fs -setrep [-R] [-w] <numReplicas> <path>
Whenever the replication factor is modified, the method

setReplication in BlackManager.java is called. Then, if the
new replication factor is less than the old replication fac-
tor, processOverReplicatedBlocks method will run for each
block of the dataset to manage deletion by calling the
chooseExcessReplicates method. First, it looks for which
blocks are associated with which nodes, then chooseRepli-
casToDelete in BlockPlacemenPolicyDefault.java is called to
determine which replicas need to remove from the cluster.

There are two problems in the current algorithm: The
first problem is the chooseReplicasToDelete algorithm is
only concerned about balancing the overall cluster, not the
dataset itself. The second problem is that even if Hadoop is
concerned about balancing the cluster, the deletion of each
replica is based on the initial state of deletion and it does
not update metrics after each deletion. Therefore, there is no
tight connection between each delete operation, which leads
to imbalanced data.

A. Workload-aware Balanced Replica Deletion (WBRD)
In light of these two problems, we are proposing a

workload-aware balanced replica deletion algorithm, as
shown in Algorithm 1. Our main objective is balancing the
data distribution as evenly as possible across the cluster
when the replication factor is decreased. The Secondary
objective is trying to reduce the CPU load of a node. If two
different machines (mi,mj) ∈ M2 are storing the same
amount of partial blocks UPBC(mi, P ) = UPBC(mj , P ),
the algorithm will remove the replica from the machine
which is over-utilised (i.e., highest CPU utilisation for the
last given t time period). First, WBRD calculates the partial
block count for each node in the cluster. After that, if an
environment is multi-rack, the getNonRackAware method
returns the set of replicas that will violate one of the rack
awareness constraints (as in equation (2)), if any of the
replicas is deleted. Deleting non-rack aware replicas can
cause a violation of rack awareness, therefore, we do not
remove them. In each iteration, WBRD tries to delete the
replica that is stored on the node with the highest partial
block count and highest CPU utilisation.

B. WBRD Implementation
We implemented our algorithm on top of Hadoop (version

2.7.3). We only altered the HDFS module and more specifi-



Algorithm 1 Workload-aware Balanced Replica Deletion
Input: M: Set<Machine>, P : Path, knew: N∗

1: F ← getF ilesFromPath(P )
2: PBC ← calculatePartialBlockCount(M,F)
3: for all Fi ∈ F do
4: Bi ← getBlocksOfFile(Fi)
5: for all bij ∈ Bi do
6: R ← {buij | u ∈ {1, .., ki} } // gets replicas
7: while |R| > knew do
8: if knew ≥ 2 and Env = Multi-Rack then
9: //replicas critical for rack-awareness

10: RNRA ← getNonRackAware(R)
11: R← R−RNRA

12: MR ← {M(buij) | buij ∈ R} // get hosts
13: sm ← highestLoadMachine(MR, PBC)
14: // delete replica
15: deleteBlockAtMachine(bij , sm)
16: PBC(sm)← PBC(sm)− 1
17: // remove replica from list
18: R ← {buij ∈ R | M(buij) 6= sm}

Algorithm 2 Select Machine with Highest Partial Block
Count and Highest CPU Utilisation(highestLoadMachine)
Input: M: Set<Machine>, PBC: Map<Machine, N+ >
Output: Machine

1: ms ← φ // selected machine
2: maxPBC ← −1 // maximum partial block count
3: for all m ∈M do
4: if maxPBC < PBC(m) then
5: maxPBC ← PBC(m)
6: ms ← m
7: else if maxPBC = PBC(m) then
8: if UCPU (ms, t) < UCPU (m, t) then
9: ms ← m

10: return ms

cally, the block placement policy and block manager for the
server. Whenever an administrator or a replica optimising
framework decides to decrease the replication factor for files
in a given directory, we create a hashset which matches
blocks with the nodes that store them. Next, we calculate
the partial block count for each node. Then, our algorithm
performs the replica deletion while maintaining a balanced
partial block count. After each replica deletion, we update
the partial block count. WBRD iterates over the hashset that
has already been created to determine the partial block count
after deletion. This calculation may create an overhead on
the system, which we have measured and will discuss in
Section VI. Additionally, in our implementation, we set the
time period t during which the CPU utilisation is measured
to one day, however, this parameter can be tuned by the user
depending on the type/shape of workload.

V. EXPERIMENTAL SETUP

In this section, we detail our experimental setup and
describe both the testbed and the benchmarks.

A. Experimental Environment

Our experimental environment is a combination of both
Hardware and Software configurations.

1) Hardware Configuration: Our experiments were con-
ducted on the Performance Engineering Laboratory’s re-
search cluster (in University College Dublin). The cluster
consists of 21 dedicated machines (1 master and 20 slaves).
Nodes are connected to each other with a Gigabit Ethernet
switch(single rack). All slave (DNs) computers are identical:
Intel Core i5 (5th generation) processors, 8 GB of RAM and
1 TB hard drive. The master node (NN) has the following
specification: Intel Core i7 (6th generation) processors, 16
GB of RAM and 1 TB hard drive.

2) Software Configuration: The operating system se-
lected was Lubuntu, which runs on kernel Linux 4.4.0-
31-generic, and the java version 1.8.0 131 was installed.
All tests were run on Hadoop version 2.7.3 (native and
our implementation). Default Hadoop and YARN Resource
manager configurations were used. Hive version 1.2.2 was
selected for concurrency tests on TPC-H. Ganglia was used
for monitoring the cluster load and the network traffic.

B. Methodology

In this section, we discuss the methodology that was
used for experiments. First, we imported data to HDFS;
subsequently, the replication factor is increased from 3 to
10. After this, the replication factor is decreased back to
3. We exported and used the same data set for both WBRD
and Hadoop’s algorithm. Once the benchmark was run on the
system, we removed the data and formatted the cluster. Each
test run was executed ten times for statistical soundness;
we normalised values by using the average of these runs.
However, we indicate the range of results in each graph.

The reasoning behind this methodology is that there are
different solutions for replica management. All of them
try to find the optimal replication factor for ‘hot’ data,
with different methodologies. The ‘hot’ data can become
‘cold’ data after some time interval. Regardless of how
the replication factor is altered, we should still see an
even distribution for homogeneous clusters, similar to the
distribution when the data is initially uploaded or replicated.

C. Benchmarks

A distributed system such as Hadoop has several perfor-
mance bottlenecks that can be stressed (e.g. disk I/O, CPU,
network), thus, a comparison between WBRD and Hadoop’s
replica deletion algorithm would not be fair unless it stresses
most of them. While there exists several benchmarks on
which we could perform our comparison, each of them
stresses a different aspect of the distributed system. For



instance, TestDFSIO stresses disk I/O performance, whereas,
Terasort stresses the whole system at once with a large
network, disk and CPU utilisation. We therefore selected
three benchmarks that stress different parts of the systems:
(i) TestDFSIO, (ii) Grep, and (iii) Terasort.

Hadoop clusters are multi-tenant systems with users able
to run multiple jobs at the same time. As it has been
underlined in [17], query-like frameworks with multiple
concurrent users (e.g. Hive and Pig) are heavily used in
production environments. Therefore, we also include TPC-H
on Hive as a benchmark and test concurrency to represent
these production domains.

1) TestDFSIO: is a well-known benchmark for evaluating
the reading and writing performance of HDFS. It is a disk-
intensive benchmark, which can measure reading/writing
throughput. We believe that having a good data distribution
should improve reading performance, hence, execution time
will be reduced. To test this hypothesis, we used TestDFSIO
to generate a 50 GB data set.

2) Grep: is a benchmark that is similar to the “grep”
Linux command-line utility. Simply, it searches for certain
regular expressions (keywords) in plain-text data and prints
the number of lines that contain the keyword as output. The
Grep benchmark is both CPU and disk intensive because it
needs to read each line individually and check that the line
contains the regular expression. We used the NOAA data set
[18] from the National Centres for Environmental Informa-
tion (between 2008/05-2016/04, 47.3 GB). We selected the
keyword string as ‘2010,1,’ in our experiments.

3) Terasort: is one of the most well-known benchmarks
for assessing Hadoop clusters’ performance. It measures the
system performance by trying to sort data. The sorting is
CPU intensive, the reading is disk intensive, passing the
data between map and reduce tasks is network intensive,
therefore, it stresses the whole system by trying to sort the
data that is created from teragen (50 GB in our case).

4) TPC-H: is a decision support benchmark [19]. Al-
though, it was designed for testing relational databases; it be-
came popular once the SQL-on-Hadoop frameworks reached
significant penetration in industry and academia [20]. We
generated a 30 GB TPC-H data set and uploaded it to HDFS.
We evaluated the system performance with four different
queries: Q1, Q3, Q6, Q14. The Queries’ key characteristics
are described in Table I. We also conducted concurrency
tests with Q6 and measured data locality, average map
tasks time, network consumption and ultimately, the system
performance. Different numbers of concurrent users are
selected as users = {1, 2, 4, 8, 16, 32}. A 1-second interval
is used between each user query run.

VI. EVALUATION

To evaluate performance, we conducted a comprehensive
set of experiments. Firstly, we observed the data distribution
because it was our primary objective. WBRD tries to reach

Table I
TPC H QUERY CHARACTERISTICS

Query Key Characteristic Tables

Q1 aggregation, where,
orderby, groupby, 1 table lineitem

Q3 aggregation, where, orderby,
groupby, 2 join, 3 table customer, lineitem, orders

Q6 aggregation, where, 1 table lineitem

Q14 aggregation, case, where,
1 join, 2 table lineitem, part
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Figure 3. Data distribution during Hadoop benchmarks
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an even distribution. The goal is to eliminate hot spots,
improve reading throughput, and consequently, WBRD will
reduce execution time. To investigate, we inspected the
evaluation of the reading throughput, the data locality, the
network utilisation, the concurrency and ultimately the over-
all system performance.

A. Block Distribution After Deletion

The Figure 3 shows how the blocks are distributed over
the cluster when the replication factor is decreased. Each
point in the graph represents each node and the number of
blocks associated with that node. We noted that standard
deviation is approximately 78 for Hadoop, but it is only 4 for
WBRD. This result clearly shows that the current Hadoop
approach causes data unbalancing after replication factor
reduction whereas WBRD maintains an even distribution.

In order to observe the relationship between the block
distribution and the data set size after replica deletion,
we created all three different data set sizes by using
TestDFSIO. Then, we conducted tests with different data
set sizes:{64GB, 128GB, 256GB}, detailed in Figure 4.
The standard deviation of the default Hadoop deletion al-
gorithm’s is 101 for 64GB, 202 for 128GB, 414 for 256GB.
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Figure 5. Performance Tests

Table II
READING THROUGHPUT(MB/S)

Average Max Min
Hadoop 16.948 18.755 14.655
WBRD 29.132 31.805 25.825

On the other hand, it is 7, 14 and 23, respectively for
WBRD. Experiments highlighted that the unbalanced replica
distribution becomes more critical as the standard deviation
increased significantly when testing with the larger data set.

B. Reading Throughput

Since Hadoop was designed for data-intensive computing,
the reading throughput is critical for the performance. More-
over, given the data distribution and reading throughput is
strongly coupled, we measured reading performance using
TestDFSIO. The results are shown in Table II. From the
graph, we can note that there has been a significant improve-
ment in reading performance from 17 Mb/sec in Hadoop to
29 Mb/sec in WBRD. Thus, WBRD can significantly im-
prove reading performance by reaching an even distribution.
The performance gain is almost 100%, highlighting that the
presence of hot spot nodes degrades the system performance.

C. Average Execution Time

Figure 5(a) compares the average execution time with the
default Hadoop approach and WBRD of the basic Hadoop
benchmarks. It can be seen from fig 5(a) that the proposed
solution can significantly reduce the execution time with
improvements of approximately 37% for TestDFSIO, 48%
for GREP and 45% for Terasort on average.

Figure 5(b) plots the result of the experiment on TPC-
H using different queries (Q1, Q3, Q6, Q14) with one
user. We noted that the performance gain is consistent and
approximately 16% for Q1, 19% for Q3, 35% for Q6, and
22% for Q14. Improvements are dependant on the type
of jobs. Q6 can be expressed with one MapReduce job
only. Therefore, the best improvement has been seen in
this case. If several MapReduce jobs are needed to run
for a certain query, improvements are limited due to the

Table III
DATA LOCALITY & AVERAGE MAP TASKS TIME FOR TPC-H Q6

CONCURRENCY TEST

Hadoop WBRD
Data Locality 75.7% 89.6%

Average Mapping Time (s) 19.898 14.003

fact that the network is the bottleneck. Similar to fig 5(a),
the performance gains can be attributed to the reading
performance through better data locality.

D. Testing with concurrent users

Hadoop clusters are typically multi-tenant systems, there-
fore, we evaluated a scenario with concurrent users. We mea-
sured data locality, network utilisation, average map tasks
time, and execution time using Q6 to provide comprehensive
in-depth analysis. Figure 5(c) reports average execution time
on TPC-H using Q6. The results show that the performance
gains become more compelling when the data is concurrently
(heavily) queried. Improvements in average execution time
are between 35% and 63% when data is heavily queried.

Table III presents the data locality and the average time
of map tasks during concurrency tests with Q6. Note that
the average map task execution time includes reading time
and is expected to be higher with a lower data locality.

Data locality is measured by
|DataLocalTasks| ∗ 100

|AllTasks|
. It

is approximately 75%, however, this increased to 89% for
WBRD. Achieving a better data locality means that the more
nodes will process local data rather than needing to transfer
it from a remote node. Therefore, WBRD can reduce the
network consumption and the time spent on map tasks.

By enhancing data locality, the average mapping time
can be reduced. Better block distribution helps the resource
manager to run map tasks locally. Having more data-local
map tasks will help to reduce network consumption. The
figure 6 plots network utilisation for only 32 concurrent
users. The average network consumption is 275Mbps for
Hadoop; however, it is 175Mbps for WBRD. We noted that
even though, Figure 6 plots the scenario with 32 users and
shows the same trend as with different concurrent users.
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Our results suggest that WBRD improves the performance
significantly by taking advantage of data locality. Running
‘data local’ map tasks improves the reading performance
and reduces the network utilisation. Thus, map tasks can
run more efficiently instead of waiting for the data transfer.

We also measured the overhead for WBRD: Decreasing
the replication factor takes approximately 312 seconds, but
the overhead is only approximately 5.3 seconds for 30GB
TPC-H. When it is scaled up, a linear increase in time can be
seen and the overhead is always less than 1.75%. Therefore,
we can claim that the overhead of WBRD is significantly
low when compared to the total time.

VII. CONCLUSION

While several works in the literature use the replication
factor as a means to improve the performance of Hadoop
Distributed File Systems, this paper identifies that adapting
this parameter creates a critical performance problem. We
found that the current Hadoop replica deletion algorithm
leads to imbalanced data, thus generates hot spot nodes.
To address this issue, we formally defined the replica
deletion problem and proposed a workload-aware balanced
replica deletion algorithm. WBRD successfully overcomes
the shortcomings of Hadoop’s algorithm by maintaining the
data balance and avoiding the creation of hot spot nodes
during the replica deletion. We have shown in this work the
direct impact of block distribution on the performance of a
Hadoop cluster using well-known benchmarks with various
bottlenecks (e.g., I/O intensive, CPU intensive). We have
shown experimentally that WBRD achieves improvements
up to 48% in execution time on average while only creating
a low computation overhead of 1.69% on average. Future
work will extend this work to heterogeneous clusters with
resource aware replica placement and ultimately, we will
develop an adaptive replication factor framework.
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