
Investigation of Replication Factor for Performance
Enhancement in the Hadoop Distributed File System

Hilmi Egemen Ciritoglu
University College Dublin
School of Computer Science

Dublin, Ireland
hilmi.egemen.ciritoglu@ucdconnect.ie

Leandro Batista de Almeida∗
University College Dublin
School of Computer Science

Dublin, Ireland
leandro@utfpr.edu.br

Eduardo Cunha de Almeida
Universidade Federal do Paraná

Curitiba, Brazil
eduardo@inf.ufpr.br

Teodora Sandra Buda
IBM Ireland

Cognitive Computing Group
Innovation Exchange

Dublin, Ireland
tbuda@ie.ibm.com

John Murphy
University College Dublin
School of Computer Science

Dublin, Ireland
j.murphy@ucd.ie

Christina Thorpe
University College Dublin
School of Computer Science

Dublin, Ireland
christina.thorpe@ucd.ie

ABSTRACT
The massive growth in the volume of data and the demand for big
data utilisation has led to an increasing prevalence of Hadoop Dis-
tributed File System (HDFS) solutions. However, the performance
of Hadoop and indeed HDFS has some limitations and remains
an open problem in the research community. The ultimate goal
of our research is to develop an adaptive replication system; this
paper presents the first phase of the work - an investigation into the
replication factor used in HDFS to determine whether increasing
the replication factor for in-demand data can improve the perfor-
mance of the system. We constructed a physical Hadoop cluster for
our experimental environment, using TestDFSIO and both the real
world and the synthetic data sets, NOAA and TPC-H, with Hive to
validate our proposal. Results show that increasing the replication
factor of the ‘hot’ data increases the availability and locality of the
data, and thus, decreases the job execution time.

KEYWORDS
Hadoop Distributed File System, Performance Testing, Replication
Factor.

1 INTRODUCTION
In recent years, there has been a rapidly increasing demand for
big data utilisation, from data analysis systems to data generated
by technologies such as the Internet of Things. Coupled with the
growing volume of structured and unstructured data across large
enterprises, this has resulted in the significant penetration of big
data systems, such as Hadoop. Apache Hadoop is an open source
software platform for distributed storage and distributed processing
of very large data sets on clusters of computers. As a component of
Hadoop, Hadoop Distributed File System (HDFS) forms the foun-
dation of this platform; it is designed to store very large data sets
reliably, and to stream those data sets at high bandwidth to user
applications [13].

However, despite the growing popularity of Hadoop, it is still
not optimal in terms of performance; for example, the work in [12]

∗Also with Universidade Tecnológica Federal do Paraná.

evaluates the architecture to identify the bottlenecks and porta-
bility limitations. Consequently, there has been a lot of activity
in the research community to develop new methods to improve
the efficiency of the technology, including data placement tech-
niques [8, 16].

Several studies have been carried out to understand the work-
load of Hadoop clusters. It has been observed that 80% of total
jobs are executed on less than 10% of all data, and 80% of data re-
accesses occurs within an hour [3]. Also, authors underlined that
although there is diversity in workloads, all workloads follow Zipf-
like distribution for recurrent data access. This shows that small
portions of a data set can be significantly more in-demand than
the rest of the data set, i.e., a data set typically has ‘hot’ data that
can vary over time, therefore, an adaptive mechanism is necessary
to optimise the provisioning for these workloads. Another study,
noted that one of the main concerns for a big data cluster is the
access time for the data from different nodes. It has been shown
that the network can easily become a system bottleneck if there is
remote HDFS access [11]. Thus, improving data locality is also an
important consideration for Hadoop performance.

HDFS uses a default replication factor of 3, meaning it stores 3
copies of every file segment (block) in the file system. From a fault
tolerance perspective, 3 copies is sufficient to reduce the risk of
data loss to negligible levels, however, the replication factor may
also be used to increase the availability and locality of the data in
the cluster. This paper proposes a modified replication factor to
increase the availability of the most in-demand or ‘hot’ data i.e.,
files that are used more frequently will have a larger replication
factor. We conducted performance tests in order to evaluate the
impact of tuning the replication factor. This paper details the test
methodology developed and tools used to asses the hypothesis.
The future direction for this research will be the development of a
dynamic replication factor framework.

In order to validate our proposal, we constructed a physical test
bed, consisting of a 20-node Hadoop cluster. Apache Hive [14] was
used to manage the data sets residing on the distributed file system
using SQL. We defined a comprehensive set of experiments, with

different queries executed on three different data sets (TestDFSIO,
NOAA, and TPC-H).

Our results show that increasing the replication factor of the
most in-demand data increased the availability of that data across
the cluster, and thus, decreased the time taken to execute a job.

The remainder of the paper is organised as follows: Section 2
presents the details of the technologies underpinning this research.
Section 3 details approach and motivation behind this paper. Sec-
tion 4 discusses the setup and methodology employed for each of
the experiments, Section 5 presents the results of the experiments
and provides an in-depth analysis. Section 6 related works. Finally,
Section 7 concludes this paper and proposes some future work.
2 BACKGROUND
The concept of Big Data is quite broad, but can be briefly defined as
the efficient and scalable analytical processing of large volumes of
complex data, produced by possibly several applications. In order to
process big data efficiently, new storage and distributed processing
techniques have been developed. One of the existing techniques is
MapReduce, which was proposed by Google [5] and is based on a
distributed file system (GFS). This platformwas designed to simplify
distributed processing tasks that required linear scalability along
with an ecosystem of applications developed from this emerging
technology.

2.1 Hadoop Overview
Apache Hadoop [7] is an open source implementation of a dis-
tributed file system that was inspired by GFS and a distributed pro-
cessing manager based on the MapReduce paradigm [5]. Hadoop
has a framework that allows the development of MapReduce appli-
cations in several programming languages. Programmers can create
their own Map and Reduce functions, as well as allowing communi-
cation with different systems that can be placed on top of Hadoop
to execute large-scale distributed processing. Hadoop is based on a
cluster architecture, using conventional, commodity machines. The
architecture of a Hadoop system is divided into two main modules:
the distributed file system (HDFS - Hadoop Distributed File System)
and the distributed processing and job manager (MapReduce v1.0
or YARN).

2.2 Hadoop Distributed File System (HDFS)
Hadoop uses HDFS [13] as a file system, which is responsible for
the persistence and consistency of distributed data. HDFS also has a
transparency for network failures and data replication. In order for
Hadoop to process data, it must be stored in a HDFS directory. HDFS
is designed to manage enormous data sets, typically TBs in size (or
larger), also providing high availability and fault tolerance even
if performing computation on commodity hardware. HDFS can
serve different processing/job management systems, such as Spark,
Impala, or data warehouse systems that run on MapReduce/YARN
jobs [7].

The smallest unit in HDFS is a block and each file in HDFS is
divided into blocks with a default block size of 128 MB. The file
blocks are replicated and distributed all over the cluster. As HDFS
clusters are designed to use commodity machines, the chance of
failure is considerable. In this way, the blocks storing the files are
replicated in 3 different computers (default configuration), to allow

greater tolerance to the failures. The replication factor is a file-level
setting, which can be set at the time of file creation and changed
later, if necessary. An application can also specify the number of
replicas of a file by using the HDFS API.

Hadoop will always try to process the data already found on
the node instead of transferring the information. This is done by
the principle that “Moving Computation is Cheaper than Moving
Data" [7], where Hadoop will copy the executable code of a job to
the nodes where the data is, since it is much more expensive to
move the data. Having more replicas can help Hadoop to increase
availability of data, therefore, the scheduler can run mappers to
process data locally instead of requesting data remotely.

2.3 Hive
Hive [14] is a data warehousing software built on top of Hadoop,
using its distributed storage and processing capabilities. The main
advantage of using Hive is the ability to use SQL (Structured Query
Language) to perform searches on data stored in a Big Data system
(Hadoop). Using Hive queries, you can avoid writing MapReduce
programs, optimising development time. Hive was selected for this
research project because it is relatively easy to run SQL queries
when compared to writing MapReduce jobs.

3 DYNAMIC REPLICATION FRAMEWORK
3.1 High-level Design of Framework
The motivation behind this research is to understand the relation-
ship between the replication factor and the system performance.
This insight will be used to develop an adaptive framework for
optimising the replication factor according to file access pattern,
that is shown in Figure 1. This system will monitor the overall
system during a measurement interval and collect job metrics for
each MapReduce job. Query history from each different framework
(such as Hive, Pig, SparkSQL etc.) will be recorded and will include
information about what data was processed by the query. Each
query will be decomposed by table and condition so that the data
access pattern can be established by combining this decomposed
information with job metrics (e.g., workload of a cluster, data local-
ity, duration and frequency of queries). Hot data will be identified
and ranked by density and the frequency of the access. Finally,
the framework will optimise the replication factor by the request
of each file if the trend of ‘hot’ data is detected or changes over
the time. We are planning to implement detection solution on the
application layer (top layer of stack). Therefore, the framework
does not need to analyse all of the Hadoop logs; it will just need to
retrieve information from the application layer only. Considering
that Hadoop log files can grow rapidly, this approach will improve
the processing efficiency significantly and reduce overhead of the
system. This automated learning sensor is left for the future work.

The scope of this paper focuses only on the performance eval-
uation of increasing the replication factor for ‘hot’ data, which
is highlighted in Figure 1. In accordance with this purpose, a set
of experiments has been conducted on a 10 and 20-node Hadoop
cluster with varying replication factor.

2

Figure 1: Architecture of Framework Planned

3.2 Replicating ‘Hot’ Data
Hot data is the portion of the data which is heavily accessed (e.g.,
year, region, etc.). In this study, performance tests are conducted
to investigate the impact of replication factor on reading time and
overall system performance for ‘hot’ data. Increasing replication fac-
tor comes with a price, which is the disk space, network bandwidth,
and time to copy the data into the system. However, replicating only
a certain portion of data will minimise this overhead. By increasing
the replication factor, the resource manager is much more likely
to find a node that stores the data. Since the allocated node stores
the related blocks, it can process these blocks locally rather than
requesting them from another node and waiting for the data to be
transferred. Our proposed solution increases the local accesses of
jobs and the number of possible parallel mappers; consequently,
we expect to see performance improvements.

4 EXPERIMENTS
The experiments were conducted in an isolated laboratory cluster,
which was not shared with any other processes. A physical clus-
ter was used instead of a virtual cluster in order to avoid possible
deviations in measurements. For example, a virtualised environ-
ment would be subject to additional latency for disk reads due to
contention between VMs.

4.1 Test Bed
The test bed cluster is composed of 21 ’shared-nothing’ computers
(1 master and 20 slaves), connected by a Gigabit Ethernet Switch.
All slave computers have a similar specification, with Intel Core i5
(5th generation) processors, 8 GB and 1 TB hard drive. The master
computer has Intel Core i7 (6th generation) processors, 16 GB and 1
TB hard drive. Each machine was monitored using Ganglia during
the tests; no errors were detected. A subset of these machines was
used to create a smaller cluster of 10 machines to explore the impact
of cluster size on the performance gain.

The tests were run on version 2.7.2 of Hadoop, with SQL queries
running on a Hive version 1.2.2. Hive jobs ran on YARN using the
MapReduce. This configuration was chosen to have a more stable
and simple baseline.

4.2 Test Methodology
Read-only workloads have been used in this study as HDFS uses
write-once, read-many model. Each test was executed 10 times
for statistical soundness, and the average results are presented
in Section 5. Before starting the tests, the data is loaded as a csv
file (uncompressed) on to the Hadoop cluster, and then the repli-
cation factor is increased incrementally. It was observed in early
exploratory tests that decreasing the replication factor can cause
a imbalance of data in the cluster. So, after the test is finished, the
data is deleted from the cluster.

Wemeasured reading performance with TestDFSIO and executed
throughput tests in NOAA and TPC-H, testing concurrent users, in
order to evaluate the performance gains when multiple users try to
access the same data set. This reflects the usual cluster behaviour
observed in industry, as the majority of the installed clusters are
multi-tenant, supporting several applications and users at same
time. The number of users for each test run was defined as users
= {32, 64, 128}. This is a reasonable number of users when we
consider multi-tenant systems. Each user is concurrently querying
the data with the same query; there is a 1-second interval between
the start of each query.

4.3 Benchmarks & Data Sets
TestDFSIO: TestDFSIO is a well-known benchmark for assessing
HDFS. It is used to assess the read/write performance for Hadoop
clusters. As the read performance is directly related to overall job
execution time, we measured the reading throughput performance
under different replication factor values and different cluster sizes
(10 nodes and 20 nodes). Two different data set sizes were tested
(4GB and 8GB) to investigate the impact of the number of blocks
on the performance.

NOAA: The NOAA data set is a set of Quality Controlled Local
Climatological Data (QCLCD) [9] and represents a real world data
set. It contains various pieces of information (42 columns) about
weather (eg. measuring station’s location, daily avg/max/min tem-
perature, etc). Five years of data is used in this work (2008-2012,
26.3 GB, 217 million records). For the NOAA data set, we explicitly
def ined data from one specific year (2010) as hot data. This means
that although data from all years contained in the data set is added
to the table, we only queried the 2010 year. Therefore, when using
a modified replication factor for the data, we specified an increased
number of replicas only for portion of data (November of 2010’s).

The TPC Benchmark-H (TPC-H): TPC-H [10] is a decision
support benchmark and represents a synthetic data set. The query
set consists of different query types such as: selection, joining,
filtering, grouping, aggregation, etc. The variety is provided in or-
der to satisfy and simulate business operation needs. The TPC-H
benchmark was created for evaluating the performance of rela-
tional database systems, however, in recent work published in the
literature [6], it has been used for Hadoop-based query engines.

The study published in [11] states that the average input size
for jobs on the Microsoft production cluster is approximately 13
GB. Additionally, another study on Hadoop clusters’ workload on
a Facebook cluster trace [3] revealed that “90% of jobs access files
of less than a few GB". In light of these studies, we populated a 10
GB data set with the dbgen application and uploaded it to HDFS.

3

The lineitem table used in this work contains approximately 60
million records and 16 different columns per record. For evaluation
purposes, we created a table on Hive and set the location of data.
Then, we only queried and increased replication factor for particular
portion of data (details in Section 4.4).

4.4 Queries
In order to validate our proposal on theNOAAdata set, we increased
the replication factor for the December 2010 data. This year was
exclusively queried using the filter ‘WHERE year = 2010 and month
= 12’ in the Hive query. Although TPC-H has 22 different queries,
the 1st and 6th queries were selected for use because they are the
most relevant and suitable queries to test our proposal [2]. The
6th query of TPC-H can be represented with only one map-reduce
job. Hive does not need to create multiple sub-jobs to accomplish
the job, therefore the performance evaluation of the system will be
more obvious. The 6th query in the TPC-H benchmark is searching
for data between the years 1994 - 1995. In order to remain consistent
and to ensure that all queries were executed on hot data, the TPC-H
1st query was modified to only filter on 1 year of data as opposed
to the entire data set. As in the 6th query, the hot data was set to be
1994-1995. We consider hot data as the data with a date attribute
value between these dates. Only the hot data from each data set is
replicated and queried in our experiments. Table 1 details the three
queries defined for the NOAA (row 1) and TPC-H data sets (row
2-3).

5 RESULTS
The replication factor has an impact on the data availability, which
can be related to reading time, and ultimately, execution time. In this
study, we evaluated the performance of Hadoop using an increasing
replication factor for hot data.

5.1 Average Job Execution Time
TestDFSIO: We assessed the reading throughput by using Test-
DFSIO with an increasing replication factor. Figure 2 shows that
the replication factor can improve reading throughput significantly.
Having more copies of data provides higher data locality and avail-
ability, thus improving the reading time, and ultimately improving
the job execution time. Two different sets of this data were created.
Additionally, two different test beds, one with 10 nodes and another
with 20 nodes, were created in order to understand the job’s be-
haviour on different cluster sizes. Regardless of the different cluster
size, we see a performance improvement in reading throughput
when the replication factor is increased.

NOAA: Figure 3 plots the results of the experiment on the NOAA
data set. Average execution time is reduced from 30s to 23s for 32
users, from 60s to 44s for 64 users and from 133s to 97s for 128 users
by changing replication factor from 1 to 10. Therefore, we can see
performance gain of approximately 13% when the replication factor
for hot data is increased from 3 to 10 for 32 concurrent users. This
gain is increased to 16% for 64 users and 17% for 128 users. The
decrease in the job execution time can be attributed to an increase
in the number of nodes (and the processing slots in each node)
available with the data blocks needed for the mapper tasks. This
increased availability supports an increased parallelism, and thus,

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 0.2 0.3 0.4 0.5

R
ea

di
ng

 T
hr

ou
gh

pu
t(m

b/
se

c)

Replication Factor/Cluster Size

20 Nodes-4GB
20 Nodes-8GB
10 Nodes-4GB
10 Nodes-8GB

Figure 2: TestDFSIO-Reading throughput on 10/20 nodes

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6 7 8 9 10
A

ve
ra

ge
 E

xe
cu

tio
n

Ti
m

e(
s)

Replication Factor

32 Users
64 Users

128 Users

Figure 3: NOAA -Test with concurrent user on 20 nodes

a decrease in job execution. Also, we can see better performance
improvements when data is accessed intensively, i.e., when the
concurrency is higher.

TPC-H: Figure 4 plots the results of the experiment on TPC-H
on the 20 node cluster using the 1st query. The improvement in job
execution time is approximately 11% for 32 users, 13% for 64 users,
and 15% for 128 users as the number of replicas were increased
from default replication factor for hot data.

Figure 5 plots the results of the experiment on TPC-H on the
20 node cluster using the 6th query. It can be seen that the job
execution time is reduced by approximately 20% for the test with
128 concurrent users and 17% with 32 and 64 concurrent users when
the replication factor were increased from 3.

In both experiments improvements can be seen until replication
factor of 9. It’s important to note that, when the data is heavily
accessed and requested by concurrent queries, the performance
improvement is more compelling. Additionally, the performance
gain trend is similar in both experiments. The job execution time
plateaus at a replication factor 9 with concurrent users. However,
if the data is not concurrently queried or there is only a few jobs
running at the same time on the cluster, the performance gain
becomes marginal at a replication factor of 4. The results show that
when the hot data is frequently and concurrently queried or the
cluster processing utilisation is very dense, replication will play
a key role in the system performance. Therefore, increasing the

4

Query Characteristics

NOAA SELECT COUNT(*) FROM noaa WHERE year = 2010 and month = 12 SELECT
WHERE

TPC - 1st

SELECT l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as
sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice
* (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice)
as avg_price, avg(l_discount) as avg_disc, count(*) as count_order FROM lineitem WHERE
l_shipdate_year >=1994 AND l_shipdate_year <1995 GROUP BY l_returnflag, l_linestatus OR-
DER BY l_returnflag, l_linestatus;

SELECT
WHERE
AGGREGATION
GROUPING
ORDERING

TPC - 6th
SELECT sum(l_extendedprice * l_discount) as revenue FROM lineitem WHERE l_shipdate_year
>= 1994 AND l_shipdate_year <1995 AND l_discount >= 0.05 AND l_discount <= 0.07 AND
l_quantity <24;

SELECT
WHERE
AGGREGATION

Table 1: Queries defined to search for data

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e(

s)

Replication Factor

32 Users
64 Users

128 Users

Figure 4: TPC-H Q1 - Test with concur-
rent user on 20 nodes test bed

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e(

s)

Replication Factor

32 Users
64 Users

128 Users

Figure 5: TPC-H Q6 - Test with concur-
rent user on 20 nodes test bed

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e(

s)

Replication Factor

32 Users
64 Users

128 Users

Figure 6: TPC-H Q6 - Test with concur-
rent user on 10 nodes test bed

replication factor for hot data improves the system performance
notably.

Experiment results show that the performance of Hadoop is
tightly coupled with the data availability, access latency and exe-
cuting mappers locally. Although, increasing the replication factor
can create a storage overhead, but increasing for only the hot data
only will minimise this overhead.

5.2 Impact of Cluster Size
To explore the impact of cluster size, we used 2 different test beds,
a 10-node cluster and a 20-node cluster. Both Figure 6 and Figure 5
show TPC-H Q6 results on different cluster size. Results reveal that,
the performance improvements of approximately 41% are achieved
for the tests on 10 nodes with different number of concurrent user
up to replication factor 5; however, these improvements are approx-
imately 53% on 20 nodes, when we increase replication factor from
1 to 9. So the impact of increasing the replication factor has a much
more significant effect on system performance when the cluster has
more nodes. Therefore, it is reasonable to say that continuing to in-
crease the replication factor on a real production cluster (thousands
of nodes), could afford an even greater performance improvement
for larger numbers of replicas.

5.3 Data Loading Overhead
When data is replicated on a cluster, it adds an additional over-
head. Since increasing replication is the core of our proposal, the

data loading time overhead introduced was measured. Creating
additional copies of data blocks takes a similar amount of time for
every increment of replication, which is always around approxi-
mately 11 seconds for this test. On the other hand, each query that
runs on hot data, can reduce the execution time up to 40 seconds.
When we consider hot data is getting queried simultaneously, the
performance improvement of the system will be very significant
even if increasing the number of replicas introduces an additional
overhead. This overhead is relatively low when we compare against
the performance enhancement.

5.4 Summary
During our experiments, we observed a performance improvement
on the job’s mapping phase when we increased replication factor.
Also, the experiments show that, once the data availability thresh-
old is reached, no more performance gains can be achieved by
continuing to increase the replication factor. It is important to note
that gain is coupled with cluster size, and our tests are conducted
on a 10 - 20 node cluster to demonstrate this. In our case we can
see performance improvement up to a replication factor of 9 on a
20 node cluster and 5 on a 10 node cluster. Although, we increase
the replication factor for only hot data, the Hadoop job execution
takes approximately 18% - 20% less time.

5

6 RELATEDWORK
The replication factor, in addition to the placement of these replicas
across data nodes, are two critical subjects related to fault tolerance,
data availability and network utilisation in distributed file systems.

Wei et. al. [15] propose CDRM; it is a cost-effective dynamic
replication management for cloud storage clusters. CDRM proposes
a model to reveal the relationship between the replication factor and
the data availability. So, CDRM can determine only lower bound of
the replication factor for satisfy the availability requirement. But
authors need to modify HDFS caching mechanism and they cached
whole file blocks for CDRM implementation. It is obvious that this
solution does not perform well for terabytes of data.

Abad et. al. propose DARE [1]; it is an adaptive data replication
for efficient cluster scheduling. DARE uses a reactive replication
budget technique with probabilistic sampling and an ageing algo-
rithm. Also, it uses existing remote data access; hence, it does not
result in extra network consumption.

Cheng et. al. propose ERMS [4]; an elastic replica management
system, which increases job locality by replicating hot data more
and keeps a minimum number of replicas for the cold data. Another
contribution of ERMS is the development of the log parser to analyse
data directly from the HDFS level. Since HDFS audit logs are rapidly
increasing in size, and it is not easy to process all data, so authors
need to propose a new system.

The work in this paper investigates the impact of increasing the
replication factor for hot data on the data availability and ultimately
the system performance. We plan to extend this work to include
an automated hot data sensor that will detect hot data. We do not
intend to inspect the HDFS audit logs; therefore, our approach will
significantly reduce processing complexity.

7 CONCLUSION
The focus of the research detailed in this paper was to investigate
the replication factor employed by HDFS. Specifically, to determine
if increasing the replication of the most accessed data can have
a positive impact on performance; and test this proposal using a
correct methodology. We constructed a physical Hadoop cluster
running Hive and executed a comprehensive set of experiments on
the TestDFSIO, NOAA, and TPC-H data sets, with different cluster
sizes, and varying numbers of concurrent users.

Despite the small size of the cluster, results clearly show that
creating more copies of the hot data increases the availability of the
data. This increased availability can support additional concurrent
mapper jobs, thus, reducing the job execution time. Our cluster
consists of only a maximum of 20 nodes, and therefore, the perfor-
mance gains we achieved are limited. When the replication factor is
increased from 3 to 9, we see approximately 18-20% decrease in job
execution time, which remains fairly stable after replication factor
of 9. The reason for this is that all data nodes in the cluster are well-
balanced at 9 replicas, and therefore the number of mapper tasks
that can be executed in parallel reached the maximum at this point.
However, if the cluster was larger (e.g., thousands of data nodes), it

is reasonable to expect the level of parallelism of jobs(specifically
mapper tasks) to be much greater and therefore the job execution
time to be reduced considerably further.

Future work will include developing an adaptive replication
scheme that will include a new mechanism for detecting hot data
using the application layer properties (e.g., Hive query analysis),
and implement a dynamic replication factor that can be increased
automatically as data becomes hot and decreased as data cools
down.

ACKNOWLEDGEMENT
This work was supported with the financial support of the Science
Foundation Ireland grant 13/RC/2094

REFERENCES
[1] Cristina L Abad, Yi Lu, and Roy H Campbell. 2011. DARE: Adaptive data replica-

tion for efficient cluster scheduling. In Cluster Computing, 2011 IEEE International
Conference on. IEEE, 159–168.

[2] Peter Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H analyzed: Hidden
messages and lessons learned from an influential benchmark. In Technology
Conference on Performance Evaluation and Benchmarking. Springer, 61–76.

[3] Yanpei Chen, Sara Alspaugh, and Randy Katz. 2012. Interactive analytical pro-
cessing in big data systems: A cross-industry study of mapreduce workloads.
Proceedings of the VLDB Endowment 5, 12 (2012), 1802–1813.

[4] Zhendong Cheng, Zhongzhi Luan, You Meng, Yijing Xu, Depei Qian, Alain Roy,
Ning Zhang, and Gang Guan. 2012. ERMS: An elastic replication management sys-
tem for hdfs. In Cluster Computing Workshops, 2012 IEEE International Conference
on. IEEE, 32–40.

[5] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[6] Avrilia Floratou, Umar Farooq Minhas, and Fatma Özcan. 2014. SQL-on-Hadoop:
Full Circle Back to Shared-nothing Database Architectures. Proc. VLDB Endow. 7,
12 (Aug. 2014), 1295–1306.

[7] Apache Software Foundation. 2018. Apache Hadoop. (2018). https:
//hadoop.apache.org.

[8] Hui Jin, Xi Yang, Xian-He Sun, and Ioan Raicu. 2012. Adapt: Availability-aware
mapreduce data placement for non-dedicated distributed computing. In Dis-
tributed Computing Systems, 2012 IEEE 32nd International Conference on. IEEE,
516–525.

[9] NOAA. 2018. NOAA Data set. (2018). https://www.ncdc.noaa.gov/data-access.
[10] Meikel Poess and Chris Floyd. 2000. New TPC benchmarks for decision support

and web commerce. ACM Sigmod Record 29, 4 (2000), 64–71.
[11] Antony Rowstron, Dushyanth Narayanan, Austin Donnelly, Greg O’Shea, and

Andrew Douglas. 2012. Nobody ever got fired for using Hadoop on a cluster.
In Proceedings of the 1st International Workshop on Hot Topics in Cloud Data
Processing. ACM, 2.

[12] Jeffrey Shafer, Scott Rixner, and Alan L Cox. 2010. The hadoop distributed
filesystem: Balancing portability and performance. In Performance Analysis of
Systems & Software, 2010 IEEE International Symposium on. IEEE, 122–133.

[13] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The hadoop distributed file system. InMass storage systems and technologies, 2010
IEEE 26th symposium on. IEEE, 1–10.

[14] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. 2009. Hive: a
warehousing solution over a map-reduce framework. Proceedings of the VLDB
Endowment 2, 2 (2009), 1626–1629.

[15] Qingsong Wei, Bharadwaj Veeravalli, Bozhao Gong, Lingfang Zeng, and Dan
Feng. 2010. CDRM: A cost-effective dynamic replication management scheme for
cloud storage cluster. In Cluster Computing, 2010 IEEE International Conference
on. IEEE, 188–196.

[16] Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, Yun Tian, James Majors, Adam
Manzanares, and Xiao Qin. 2010. Improving mapreduce performance through
data in heterogeneous hadoop clusters. In Parallel & Distributed Processing, Work-
shops and Phd Forum, 2010 IEEE International Symposium on. IEEE, 1–9.

6

https://hadoop.apache.org
https://hadoop.apache.org
https://www.ncdc.noaa.gov/data-access

	Abstract
	1 Introduction
	2 Background
	2.1 Hadoop Overview
	2.2 Hadoop Distributed File System (HDFS)
	2.3 Hive

	3 Dynamic Replication Framework
	3.1 High-level Design of Framework
	3.2 Replicating `Hot' Data

	4 Experiments
	4.1 Test Bed
	4.2 Test Methodology
	4.3 Benchmarks & Data Sets
	4.4 Queries

	5 Results
	5.1 Average Job Execution Time
	5.2 Impact of Cluster Size
	5.3 Data Loading Overhead
	5.4 Summary

	6 Related Work
	7 Conclusion
	References

